Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide.

Identifieur interne : 003D32 ( Main/Exploration ); précédent : 003D31; suivant : 003D33

Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide.

Auteurs : David A. Lipson [États-Unis] ; Michelle Blair ; Greg Barron-Gafford ; Kathrine Grieve ; Ramesh Murthy

Source :

RBID : pubmed:16598634

Descripteurs français

English descriptors

Abstract

There is little current understanding of the relationship between soil microbial community composition and soil processes rates, nor of the effect climate change and elevated CO(2) will have on microbial communities and their functioning. Using the eastern cottonwood (Populus deltoides) plantation at the Biosphere 2 Laboratory, we studied the relationships between microbial community structure and process rates, and the effects of elevated atmospheric CO(2) on microbial biomass, activity, and community structure. Soils were sampled from three treatments (400, 800, and 1200 ppm CO(2)), a variety of microbial biomass and activity parameters were measured, and the bacterial community was described by 16S rRNA libraries. Glucose substrate-induced respiration (SIR) was significantly higher in the 1200 ppm CO(2) treatment. There were also a variety of complex, nonlinear responses to elevated CO(2). There was no consistent effect of elevated CO(2) on bacterial diversity; however, there was extensive variation in microbial community structure within the plantation. The southern ends of the 800 and 1200 ppm CO(2) bays were dominated by beta-Proteobacteria, and had higher fungal biomass, whereas the other areas contained more alpha-Proteobacteria and Acidobacteria. A number of soil process rates, including salicylate, glutamate, and glycine substrate-induced respiration and proteolysis, were significantly related to the relative abundance of the three most frequent bacterial taxa, and to fungal biomass. Overall, variation in microbial activity was better explained by microbial community composition than by CO(2) treatment. However, the altered diversity and activity in the southern bays of the two high CO(2) treatments could indicate an interaction between CO(2) and light.

DOI: 10.1007/s00248-006-9032-1
PubMed: 16598634


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide.</title>
<author>
<name sortKey="Lipson, David A" sort="Lipson, David A" uniqKey="Lipson D" first="David A" last="Lipson">David A. Lipson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA. dlipson@sciences.sdsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA 92182-4614</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blair, Michelle" sort="Blair, Michelle" uniqKey="Blair M" first="Michelle" last="Blair">Michelle Blair</name>
</author>
<author>
<name sortKey="Barron Gafford, Greg" sort="Barron Gafford, Greg" uniqKey="Barron Gafford G" first="Greg" last="Barron-Gafford">Greg Barron-Gafford</name>
</author>
<author>
<name sortKey="Grieve, Kathrine" sort="Grieve, Kathrine" uniqKey="Grieve K" first="Kathrine" last="Grieve">Kathrine Grieve</name>
</author>
<author>
<name sortKey="Murthy, Ramesh" sort="Murthy, Ramesh" uniqKey="Murthy R" first="Ramesh" last="Murthy">Ramesh Murthy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16598634</idno>
<idno type="pmid">16598634</idno>
<idno type="doi">10.1007/s00248-006-9032-1</idno>
<idno type="wicri:Area/Main/Corpus">003E33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003E33</idno>
<idno type="wicri:Area/Main/Curation">003E33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003E33</idno>
<idno type="wicri:Area/Main/Exploration">003E33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide.</title>
<author>
<name sortKey="Lipson, David A" sort="Lipson, David A" uniqKey="Lipson D" first="David A" last="Lipson">David A. Lipson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA. dlipson@sciences.sdsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, San Diego State University, San Diego, CA 92182-4614</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blair, Michelle" sort="Blair, Michelle" uniqKey="Blair M" first="Michelle" last="Blair">Michelle Blair</name>
</author>
<author>
<name sortKey="Barron Gafford, Greg" sort="Barron Gafford, Greg" uniqKey="Barron Gafford G" first="Greg" last="Barron-Gafford">Greg Barron-Gafford</name>
</author>
<author>
<name sortKey="Grieve, Kathrine" sort="Grieve, Kathrine" uniqKey="Grieve K" first="Kathrine" last="Grieve">Kathrine Grieve</name>
</author>
<author>
<name sortKey="Murthy, Ramesh" sort="Murthy, Ramesh" uniqKey="Murthy R" first="Ramesh" last="Murthy">Ramesh Murthy</name>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="ISSN">0095-3628</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodiversity (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Climate (MeSH)</term>
<term>Ecology (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (growth & development)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Soil (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique 16S (génétique)</term>
<term>Biodiversité (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Climat (MeSH)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Sol (MeSH)</term>
<term>Écologie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN ribosomique 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Dioxyde de carbone</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Biomass</term>
<term>Climate</term>
<term>Ecology</term>
<term>Phylogeny</term>
<term>Soil</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biodiversité</term>
<term>Biomasse</term>
<term>Climat</term>
<term>Microbiologie du sol</term>
<term>Phylogenèse</term>
<term>Sol</term>
<term>Écologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There is little current understanding of the relationship between soil microbial community composition and soil processes rates, nor of the effect climate change and elevated CO(2) will have on microbial communities and their functioning. Using the eastern cottonwood (Populus deltoides) plantation at the Biosphere 2 Laboratory, we studied the relationships between microbial community structure and process rates, and the effects of elevated atmospheric CO(2) on microbial biomass, activity, and community structure. Soils were sampled from three treatments (400, 800, and 1200 ppm CO(2)), a variety of microbial biomass and activity parameters were measured, and the bacterial community was described by 16S rRNA libraries. Glucose substrate-induced respiration (SIR) was significantly higher in the 1200 ppm CO(2) treatment. There were also a variety of complex, nonlinear responses to elevated CO(2). There was no consistent effect of elevated CO(2) on bacterial diversity; however, there was extensive variation in microbial community structure within the plantation. The southern ends of the 800 and 1200 ppm CO(2) bays were dominated by beta-Proteobacteria, and had higher fungal biomass, whereas the other areas contained more alpha-Proteobacteria and Acidobacteria. A number of soil process rates, including salicylate, glutamate, and glycine substrate-induced respiration and proteolysis, were significantly related to the relative abundance of the three most frequent bacterial taxa, and to fungal biomass. Overall, variation in microbial activity was better explained by microbial community composition than by CO(2) treatment. However, the altered diversity and activity in the southern bays of the two high CO(2) treatments could indicate an interaction between CO(2) and light.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16598634</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>08</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0095-3628</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>51</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2006</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide.</ArticleTitle>
<Pagination>
<MedlinePgn>302-14</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>There is little current understanding of the relationship between soil microbial community composition and soil processes rates, nor of the effect climate change and elevated CO(2) will have on microbial communities and their functioning. Using the eastern cottonwood (Populus deltoides) plantation at the Biosphere 2 Laboratory, we studied the relationships between microbial community structure and process rates, and the effects of elevated atmospheric CO(2) on microbial biomass, activity, and community structure. Soils were sampled from three treatments (400, 800, and 1200 ppm CO(2)), a variety of microbial biomass and activity parameters were measured, and the bacterial community was described by 16S rRNA libraries. Glucose substrate-induced respiration (SIR) was significantly higher in the 1200 ppm CO(2) treatment. There were also a variety of complex, nonlinear responses to elevated CO(2). There was no consistent effect of elevated CO(2) on bacterial diversity; however, there was extensive variation in microbial community structure within the plantation. The southern ends of the 800 and 1200 ppm CO(2) bays were dominated by beta-Proteobacteria, and had higher fungal biomass, whereas the other areas contained more alpha-Proteobacteria and Acidobacteria. A number of soil process rates, including salicylate, glutamate, and glycine substrate-induced respiration and proteolysis, were significantly related to the relative abundance of the three most frequent bacterial taxa, and to fungal biomass. Overall, variation in microbial activity was better explained by microbial community composition than by CO(2) treatment. However, the altered diversity and activity in the southern bays of the two high CO(2) treatments could indicate an interaction between CO(2) and light.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lipson</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA. dlipson@sciences.sdsu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blair</LastName>
<ForeName>Michelle</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barron-Gafford</LastName>
<ForeName>Greg</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grieve</LastName>
<ForeName>Kathrine</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Murthy</LastName>
<ForeName>Ramesh</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>04</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="N">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004463" MajorTopicYN="Y">Ecology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2005</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16598634</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-006-9032-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Microbiol. 2002 Jun;5(3):240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12057676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Sep;180(18):4765-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2002 Nov;4(11):654-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12460273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2002 Apr;43(3):307-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12037609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Aug;68(8):3673-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1995 Mar;59(1):143-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7535888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 18;257(5077):1672-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17841166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Jul;58(7):2292-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1386212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 1999 May;36(1-2):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10353798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jun 1;24(11):2080-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8668539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 May 2;276(5313):734-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 1999 May;36(1-2):45-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10353799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Nov;65(11):4715-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10543776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15469911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 May;70(5):2867-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15128545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2003 Aug;46(2):187-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14708744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Oct;67(10):4399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11571135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Oct;24(10):1137-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Apr;131(2):236-244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547691</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Barron Gafford, Greg" sort="Barron Gafford, Greg" uniqKey="Barron Gafford G" first="Greg" last="Barron-Gafford">Greg Barron-Gafford</name>
<name sortKey="Blair, Michelle" sort="Blair, Michelle" uniqKey="Blair M" first="Michelle" last="Blair">Michelle Blair</name>
<name sortKey="Grieve, Kathrine" sort="Grieve, Kathrine" uniqKey="Grieve K" first="Kathrine" last="Grieve">Kathrine Grieve</name>
<name sortKey="Murthy, Ramesh" sort="Murthy, Ramesh" uniqKey="Murthy R" first="Ramesh" last="Murthy">Ramesh Murthy</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Lipson, David A" sort="Lipson, David A" uniqKey="Lipson D" first="David A" last="Lipson">David A. Lipson</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003D32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16598634
   |texte=   Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16598634" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020